

Deep Learning for Near-duplicated Patterns Discovery and Alignment in Artworks

Author: Xi Shen Thesis Advisor: Mathieu Aubry Dec. 3, 2021

Motivation: art analysis on Brueghel

Several artworks in Brueghel (total 1 586 artworks):

Jan Jan Brueghel Complete Catalog

Motivation: One-shot detection

•••

•••

Motivation: Discovery

Motivation: Dense alignment

Related works: computer vision and art

Artwork retrieval. [Shrivastava et al. 2011; Crowley et al. 2015; Seguin et al. 2016 ...]

Attributes prediction. [Karayev et al. 2014; Van Noord et al. 2015; Strezoski and Worring 2019 ...]

Object detection in artworks. [Ginasor et al. 2014; Crowley and Zisserman, 2014; Gonthier et al, 2018...]

Creating artworks. [Gatys et al. 2015; Zhu et al. 2017; Elgamma et al. 2017...]

Challenges

1. Lack of supervision

2. Diversity of depiction styles

3. Scalability

Related works: non-deep approaches

Image retrieval. [Sivic and Zisserman, 2003; Nister and Stewenius, 2006; Philbin et al. 2007...]

Object discovery. [Tang et al. 2014; Cho et al. 2015; Vo et al. 2019...]

Optical flow. [Brox et al. 2009, Liu et al. 2010; Revaud et al. 2015...]

Related works: deep approaches

Image retrieval. [Babenko et al, 2014; Gordo et al, 2017; Radenovic et al. 2018...] $\begin{array}{c} \text{Free constraints of the point of th$

Optical flow. [Dosovitskiy et al. 2015; Ilg et al. 2017; Teed and Deng 2020...]

Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction

Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction

Task: one-shot detection

Detect

patterns

Query

•••

Solution: multi-scale feature matching

Problem: ImageNet feature results

Query

ImageNet features are not invariant to style

No training data available

Key idea: metric learning

Positive $(P_1 \text{ and } P_2)$ and negative pair $(P_1 \text{ and } N_1)$:

$L(P_1, P_2, N_1) = \max(s(P_1, N_1), 1-\lambda) - \min(s(P_1, P_2), \lambda)$

• s: cosine similarity

• λ : hyper-parameter in the triplet loss

Question: how to find positive / negative pairs?

Positive pairs: query patch sampling

Positive pairs: candidates via matching

Positive pairs: validation from consistency

Positive pairs: hard positive mining

Negative pairs

Visual results

ImageNet Feature

Our

Feature

$$S(I_1, I_2) = \sum_{i \in \mathcal{I}} e^{-rac{\|x_1^i - \mathcal{T}(x_2^i)\|^2}{2\sigma^2}} s(f_1^i, f_2^i)$$

- $\circ \mathcal{I}$: inlier set
- $\circ~I_1, I_2$: pair of regions
- $\circ \mathcal{T}$: geometric transformation
- s: similarity metric
- fⁱ₁, fⁱ₂: features of i_{th} correspondence
 xⁱ₁, xⁱ₂: positions of i_{th} correspondence

$$S(I_1, I_2) = \sum_{i \in \mathcal{I}} e^{-rac{\|x_1^i - \mathcal{T}(x_2^i)\|^2}{2\sigma^2}} s(f_1^i, f_2^i)$$

- $\circ \mathcal{I}$: inlier set
- $\circ~I_1, I_2:$ pair of regions
- $\circ \mathcal{T}$: geometric transformation
- s: similarity metric
- fⁱ₁, fⁱ₂: features of i_{th} correspondence
 xⁱ₁, xⁱ₂: positions of i_{th} correspondence

$$S(I_1, I_2) = \sum_{i \in \mathcal{I}} e^{-rac{\|x_1^i - \mathcal{T}(x_2^i)\|^2}{2\sigma^2}} s(f_1^i, f_2^i)$$

- $\circ \mathcal{I}$: inlier set
- $\circ~I_1, I_2$: pair of regions
- $\circ~\mathcal{T}:$ geometric transformation
- \circ **s**: similarity metric
- fⁱ₁, fⁱ₂: features of i_{th} correspondence
 xⁱ₁, xⁱ₂: positions of i_{th} correspondence

Discovery

- $\circ \mathcal{I}$: inlier set
- $\circ~I_1, I_2$: pair of regions
- $\circ \mathcal{T}$: geometric transformation
- s: similarity metric
- fⁱ₁, fⁱ₂: features of i_{th} correspondence
 xⁱ₁, xⁱ₂: positions of i_{th} correspondence

ImageNet Feature

Our Feature

Discovery our feature

Brueghel dataset

Results: one-shot detection on Brueghel

	Feature \setminus Method	Cosine simila	rity	Discovery score	
Ir	mageNet pre-taining	58.0		54.8	
С	Context Prediction [11]	58.8		64.29	
С	ours (trained on Brueghel)	75.3		76.4	
Table 1: Experimental results on Brueghel, $IoU > 0.3$.					

Results: one-shot detection on Brueghel

	Feature \setminus Method	Cosine similari	ty Discovery score		
	ImageNet pre-taining	58.0	54.8		
	Context Prediction [11]	58.8	64.29		
	Ours (trained on Brueghel)	75.3	76.4		
Table 1: Experimental results on Brueghel, $IoU > 0.3$.					

Results: one-shot detection on Brueghel

Feature \setminus Method	Cosine similarity	Discovery score		
ImageNet pre-taining	58.0	54.8		
Context Prediction [11]	58.8	64.29		
Ours (trained on Brueghel)	75.3	76.4		
Table 1. Free entrol regults on Drugenbal IaU > 0.2				

Table 1: Experimental results on Brueghel, IoU > 0.3.

Results of discovery

Other results: geo-localization

Method	LTLL (%)	Oxford (%)
B. Fernando et al.[16]	56.1	_
F. Radenović et al. $[35]$	-	87.8
ResNet18 max-pool, image level	59.8	14.0
ResNet18 + discovery	80.9	85.0
Ours (trained $LTLL + discovery$)	88.5	83.6
Ours (trained Oxford + discovery)	85.6	85.7
Table 2: Classification accuracy	on LTLL &	and retrieval

Table 2: Classification accuracy on LTLL and retrieval mAP on Oxford5K

Discovered group in LTLL

Discovered group in Oxford

• Annotations on the Brueghel to evaluate one-shot detection

• Self-supervised training strategy to learn style-invariant features

• Multi-scale feature matching to discover repeated patterns

Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction

Task: co-segmentation in a pair of images

Input predicted masks Problem: no training data available

Key idea: synthetic pairs with duplicated patterns

Source and selected segment

Background

Key idea: direct copy-paste

Direct Copy-paste

Key idea: our blending

Our blending

Poisson blending [Pérez et al. 2003]

> Style transfer [Huang and Belongie 2017]

Annotations

Generated images

Masks

Correspondences

Training data

One object COCO Seg.

Two objects Unsup. Seg.

Source

Blended

Style transfer

Source

Blended

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{\underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}}}_{\mathcal{L}_{mask}} + \underbrace{\underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}}}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

$$\mathcal{L}_{sup}^{s} = \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{s})}_{\mathcal{L}_{mask}} + \underbrace{CE(\mathbf{M}_{gt}^{s}, \mathbf{M}^{t}(\mathbf{C}^{s \to t}))}_{\mathcal{L}_{tmask}} + \underbrace{\eta \frac{1}{\sum_{i,j} \mathbf{M}_{gt}^{s}(i,j)} \sum_{i,j} \mathbf{M}_{gt}^{s}(i,j) \| \mathbf{C}^{s \to t}(i,j) - \mathbf{C}_{gt}^{s \to t}(i,j) \|}_{\mathcal{L}_{corr}}$$

Experiments: one-shot detection on Brueghel

Score between a pair of images

$$\begin{split} \mathcal{S}(\mathbf{I}^{s},\mathbf{I}^{t}) &= \sum_{i,j} \underbrace{\mathbf{M}_{joint}^{s}(i,j)}_{\text{Mask}} \underbrace{cos(\mathbf{F}^{s}(i,j),\mathbf{F}^{t}(\mathbf{C}^{s \to t}(i,j)))}_{\text{Feat. similarity}} \\ \mathbf{M}_{joint}^{s}(i,j) &= \mathbf{M}^{t}(\mathbf{C}^{s \to t}(i,j))\mathbf{M}^{s}(i,j) \end{split}$$

Query

Top-3 retrieved images

Experiments: one-shot detection on Brueghel

Feat. + Methods	mAP		
	Retrieval	Det.(IoU > 0.3)	
Shen et al. $[53] + \cos[53]$	75.5	75.3	
Shen et al. [53] + discovery [53]	76.6	76.4	
MocoV2 [8] + cos [53]	79.0	78.7	
MocoV2 [8] + discovery [53]	80.8	79.6	
Ours + Unsupervised segments			
Transformer	81.8	79.4	
Sparse-Ncnet	82.8	73.4	
Ours + COCO segments [35]			
Transformer	84.4	81.8	
Sparse-Ncnet	83.3	73.7	

Table 1. Art detail retrieval and detection on Brueghel [53]. For detection, we employ ArtMiner (Brueghel [53] + cos [53]) as a post-processing and reports results with IoU > 0.3 [53]

Experiments: one-shot detection on Brueghel

Feat. + Methods	mAP	
	Retrieval	Det.(IoU > 0.3)
Shen et al. $[53] + \cos[53]$	75.5	75.3
Shen et al. [53] + discovery [53]	76.6	76.4
MocoV2 [8] + cos [53]	79.0	78.7
MocoV2 [8] + discovery [53]	80.8	79.6
Ours + Unsupervised segments		
Transformer	81.8	79.4
Sparse-Ncnet	82.8	73.4
Ours + COCO segments [35]		
Transformer	84.4	81.8
Sparse-Ncnet	83.3	73.7

Table 1. Art detail retrieval and detection on Brueghel [53]. For detection, we employ ArtMiner (Brueghel [53] + cos [53]) as a post-processing and reports results with IoU > 0.3 [53]

Discovery on Brueghel: Correspondences graphCorrespondences $\mathcal{V} = \{v_1, v_2, ..., v_j, ..., v_j, ...\}$ \mathcal{C} $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\frac{1}{2} \frac{m_i m_j}{\sigma} \exp\left(\frac{||x_i^s - x_j^s||}{\sigma}\right) \left[\exp\left(\frac{||x_i^t - C^{t_j \to t_i}(x_j^t)||}{\sigma}\right) + \exp\left(\frac{||x_j^t - C^{t_i \to t_j}(x_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$\frac{1}{2}m_im_j\exp(\frac{||x_i^s-x_j^s||}{\sigma})\left[\exp(\frac{||x_i^t-C^{t_j\to t_i}(x_j^t)||}{\sigma})+\exp(\frac{||x_j^t-C^{t_i\to t_j}(x_i^t)||}{\sigma})\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{j} = (s_{j}, t_{j}, x_{j}^{s}, x_{j}^{t}, m_{j})$$

$$\frac{1}{2} m_i m_j \exp\left(\frac{||\mathbf{x}_i^s - \mathbf{x}_j^s||}{\sigma}\right) \left[\exp\left(\frac{||\mathbf{x}_i^t - \mathbf{C}^{t_j \to t_i}(\mathbf{x}_j^t)||}{\sigma}\right) + \exp\left(\frac{||\mathbf{x}_j^t - \mathbf{C}^{t_i \to t_j}(\mathbf{x}_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{i})$$

$$v_{i} = (s_{i}, t_{i}, x_{j}^{s}, x_{j}^{t}, m_{j})$$

$$\frac{1}{2} m_i m_j \exp\left(\frac{||\mathbf{x}_i^s - \mathbf{x}_j^s||}{\sigma}\right) \left[\exp\left(\frac{||\mathbf{x}_i^t - \mathbf{C}^{t_j \to t_i}(\mathbf{x}_j^t)||}{\sigma}\right) + \exp\left(\frac{||\mathbf{x}_j^t - \mathbf{C}^{t_i \to t_j}(\mathbf{x}_i^t)||}{\sigma}\right)\right]$$

$$v_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

$$w_{i} = (s_{i}, t_{i}, x_{i}^{s}, x_{i}^{t}, m_{i})$$

Experiments: discovery on Brueghel [Shen et al. 2019]

Other results

Discovery on the dataset of [Rubinstein et al. 2013]

Place recognition Tokyo24/7 [Torii et al. 2015]

Place recognition Pitts30K [Torri et al. 2013]

• Learning co-segmentation from synthetic pairs

• Discovering patterns using the correspondence graph

Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction

Problem: generic image alignment

Final Flow

<u>Stage 1</u>: RANSAC on deep features

<u>Stage 1</u>: RANSAC on deep features

Stage 2: Local flow predictions

SSIM + mask + cycle-consistency loss

Stage 2: Local flow predictions

SSIM + mask + cycle-consistency loss

Stage 2: Local flow predictions

Key idea: an unsupervised two-stage method

E.g. : MOCO features

Stage 1: RANSAC on deep features

Final Flow

Experiments: artwork alignment

Inputs

W/o alignment

Coarse alignment

Fine alignment

Top: Coarse flow Bottom: Fine flow

Experiments: artwork analysis

Target 2

Source

Target 1

More visual results can be found in the project page : http://imagine.enpc.fr/~shenx/SegSwap/

Experiments: aligning a group of art details

Discovered patterns in [Shen et al. 2019]

Our fine alignment

Experiments: aligning a group of Internet images

Our fine alignment

Other results

Optical flow on KITTI [Morit and Geiger, 2015] and <u>Hpatches [Vassileios et al. 2017]</u>

Input

Pred. flow

G.T. flow

Error map

Sparse correspondences on RobotCar [Will et al. 2017, Mans et al. 2019] and MegaDepth [Vassileios et al. 2017]

Inputs

Avg. coarse align.

Avg. fine align.

Top: coarse flow Bottom: fine flow

And two-view geometric estimation, 3D reconstruction and texture transfer...

Other results

Two-view geometric estimation on YFCC100M [Thomee et al. 2016; Zhang et al. 2019] and Aachen day-night [Sattle et al. 2018]

Input pairs

Texture transfer on LTLL [Fernando et al. 2015]

Source

Target

Texture transfer

• Unsupervised two-stage method for dense image alignment

• Superior performances on artworks alignment, optical flow, sparse correspondences and 3D reconstruction

Conclusion

Three unsupervised deep learning methods for near-duplicated patterns discovery and alignment in artworks:

- Style-invariant feature from self-supervision
- Learning co-segmentation from synthetic data
- Dense image alignment from reconstruction

Publications

Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning. Xi Shen, Alexei A. Efros, Mathieu Aubry, CVPR 2019; Project page and code: <u>http://imagine.enpc.fr/~shenx/ArtMiner/</u>

Spatially-consistent Feature Matching and Learning for Art Collections and Watermark Recognition. Xi Shen, Robin Champenois, Shiry Ginosar, Ilaria Pastrolin, Morgane Rousselot, Oumayma Bounou, Tom Monnier, Spyros Gidaris, François Bougard, Pierre-Guillaume Raverdy, Marie-Françoise Limon, Christine Bénèvent, Marc Smith, Olivier Poncet, K. Bender, Joyeux-Prunel Béatrice, Elizabeth Honig, Alexei A. Efros, Mathieu Aubry IJCV Minor Revision, 2021; Project page and code: <u>http://imagine.enpc.fr/~shenx/HislmgAna/</u>

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery. **Xi Shen**, Alexei A. Efros, Armand Joulin, Mathieu Aubry, **In submission;** Project page and code: <u>http://imagine.enpc.fr/~shenx/SegSwap/</u>

RANSAC-Flow: Generic Two-stage Image Alignment.
Xi Shen, François Darmon, Alexei A. Efros, Mathieu Aubry,
ECCV 2020; Project page and code: <u>http://imagine.enpc.fr/~shenx/RANSAC-Flow/</u>

Additional publications on historical data analysis

Large-Scale Historical Watermark Recognition: dataset and a new consistency-based approach. Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry ICPR, 2021, Project page and code: <u>http://imagine.enpc.fr/~shenx/Watermark/</u>

A Web Application for Watermark Recognition. Oumayma Bounou, Tom Monnier, Ilaria Pastrolin, Xi Shen, Christine Bénèvent, Marie-Françoise Limon-Bonnet, François Bougard, Mathieu Aubry, Marc Smith, Olivier Poncet, Pierre-Guillaume Raverdy Journal of Data Mining and Digital Humanities, 2021, Web application: <u>https://filigranes.inria.fr/#/filigranesearch</u>

Image Collation: Matching illustrations in manuscripts. Ryad Kaoua, Xi Shen, Alexandra Durr, Stavros Lazaris, David Picard, Mathieu Aubry ICDAR, 2021, Project page and code: <u>http://imagine.enpc.fr/~shenx/ImageCollation/</u>

Other publications

Few –shot learning

Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. Shell Xu Hu, Pablo G Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D Lawrence, Andreas Damianou ICLR, 2020 Code: https://github.com/hushell/sib meta learn

Re-ranking for image retrieval and transductive few-shot classification. **Xi Shen**, Yang Xiao, Shell Hu, Othman Sbai, Mathieu Aubry **NeurIPS**, 2021

Project page and code: <u>http://imagine.enpc.fr/~shenx/SSR/</u>

Weakly supervised learning

Marginalized Average Attentional Network for Weakly-Supervised Learning. Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W Tsang, Dit-Yan Yeung ICLR, 2019 Code: https://github.com/yyuanad/MAAN

Future works

• An advanced annotation system incorporating unsupervised / weakly supervised techniques, interaction with users

• End-to-end multi-object multi-image discovery

Thanks to everybody I interacted with

Thanks for your attention! Questions ?