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Motivation: art analysis on Brueghel 

https://www.janbrueghel.net/Several artworks in Brueghel (total 1 586 artworks): 
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Motivation: One-shot detection
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Motivation: Discovery
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Motivation: Dense alignment

…

GIF Avg. Output GIF Output Avg.
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Related works: computer vision and art

Artwork retrieval. [Shrivastava et al. 2011; Crowley et al. 2015; 
Seguin et al. 2016 …]

Attributes prediction. [Karayev et al. 2014; Van Noord et al. 2015; 
Strezoski and Worring 2019 …]

Object detection in artworks. [Ginasor et al. 2014; Crowley and 
Zisserman, 2014; Gonthier et al, 2018…]

Creating artworks. [Gatys et al. 2015; Zhu et al. 2017; Elgamma et 
al. 2017…]
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Challenges

1. Lack of supervision 2. Diversity of depiction styles 3. Scalability
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Related works: non-deep approaches

Image retrieval. [Sivic and Zisserman, 2003; Nister and 
Stewenius, 2006; Philbin et al. 2007…]

Object discovery. [Tang et al. 2014; Cho et al. 2015; Vo 
et al. 2019…]

Optical flow. [Brox et al. 2009, Liu et al. 2010; Revaud et 
al. 2015…]
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Related works: deep approaches

Image retrieval. [Babenko et al, 2014; Gordo et al, 2017; 
Radenovic et al. 2018…]

Object discovery. [Vo et al. 2020; Chen et al. 2020; 
Simeoni et al. 2021…]

Optical flow. [Dosovitskiy et al. 2015; Ilg et al. 2017; Teed 
and Deng 2020…]
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Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction
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Contributions in my thesis
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Task: one-shot detection

Detect 
near-duplicated 

patterns

Query

… … …
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Solution: multi-scale feature matching

Feature similarity

CNN CNN
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Problem: ImageNet feature results 

Query Top Matches

ImageNet features are not invariant to style

No training data available
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Key idea: metric learning

Positive (P1 and P2) and negative pair (P1 and N1) :

• s:  cosine similarity

• 𝜆: hyper-parameter in the triplet loss

Question: how to find positive / negative pairs? 
15



Positive pairs: query patch sampling
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Positive pairs: candidates via matching
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Positive pairs: validation from consistency 
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Score (          ,         ) = 15. / 16 Score (          ,          ) = 1. / 16
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Positive pairs: hard positive mining
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Negative pairs

Positive pair

Top-k matches
as 

negative pairs
21



ImageNet 
Feature

Our 
Feature

Visual results
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Discovery score
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Discovery score
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Discovery score
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Discovery score
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Discovery score
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Discovery Score: Discovery
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ImageNet 
Feature

Our 
Feature

Discovery
+ 

our feature
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Brueghel dataset
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Results: one-shot detection on Brueghel
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Results: one-shot detection on Brueghel
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Results: one-shot detection on Brueghel
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Results of discovery
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Other results: geo-localization

Discovered group in Oxford

Discovered group in LTLL
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Summary

• Annotations on the Brueghel to evaluate one-shot detection

• Self-supervised training strategy to learn style-invariant features

• Multi-scale feature matching to discover repeated patterns
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Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction
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Task: co-segmentation in a pair of images

Input predicted masks
Problem: no training data available 39



Key idea: synthetic pairs with duplicated patterns

Source and selected segment Background
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Key idea: direct copy-paste

Direct
Copy-paste
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Key idea: our blending

Our blending

Poisson 
blending 

[Pérez et al. 2003]
+

Style 
transfer 
[Huang and 

Belongie 2017]

42



Annotations

Generated images Masks Correspondences

Annotations
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Training data

Source Blended

Style transfer
Two objects
COCO Seg.

One object
COCO Seg.

Source Blended

Two objects
Unsup. Seg.
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Key idea: learning co-segmentation

Objective function: 
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Key idea: learning co-segmentation

Objective function: 
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Key idea: learning co-segmentation

Objective function: 
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Key idea: learning co-segmentation

Objective function: 
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Key idea: learning co-segmentation

Objective function: 
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Key idea: learning co-segmentation

Objective function: 

50



Experiments: one-shot detection on Brueghel

Score between a pair of images
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Experiments: one-shot detection on Brueghel
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Experiments: one-shot detection on Brueghel
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Discovery on Brueghel: Correspondences graph

Graph: 

Correspondences  

Indexes 
of 

source and targe images

Corr. Pred.

Mask Pred.
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Discovery on Brueghel: Correspondences graph

Graph: 

3-cycle Consistency
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Discovery on Brueghel: Correspondences graph
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Discovery on Brueghel: Correspondences graph
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Discovery on Brueghel: Correspondences graph
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Discovery on Brueghel: Correspondences graph
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Experiments: discovery on Brueghel [Shen et al. 2019]
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Other results
Discovery on the dataset of [Rubinstein et al. 2013]

Place recognition Tokyo24/7 [Torii et al. 2015]

Place recognition Pitts30K [ Torri et al. 2013]

61



Summary

• Learning co-segmentation from synthetic pairs

• Discovering patterns using the correspondence graph
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Contributions in my thesis

1. Style-invariant feature from self-supervision

2. Co-segmentation from synthetic data

3. Dense image alignment from reconstruction
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Problem: generic image alignment

…

GIF Avg.

Output 
GIF

Output 
Avg.
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Final Flow

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

… …
CNN

CNN

H 1

H
K

…

Key idea: an unsupervised two-stage method
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features H 1
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

CNNH 1
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

CNNH 1

SSIM + mask + cycle-consistency loss

Mask loss Confidence at (x,y)
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Key idea: an unsupervised two-stage method

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

CNNH 1

SSIM + mask + cycle-consistency loss

Confident regions, with
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Key idea: an unsupervised two-stage method

H 1

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

… …
CNN

CNN

H
K

…
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Key idea: an unsupervised two-stage method

H 1 Final Flow

Stage 1: 
RANSAC on deep features

Stage 2: Local flow predictions

… …
CNN

CNN

H
K

…

E.g. : MOCO features
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Inputs W/o alignment Coarse alignment Fine alignment Top: Coarse flow
Bottom: Fine flow

Experiments: artwork alignment
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Source Target 1Target 2

Experiments: artwork analysis
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Experiments: aligning a group of art details

Discovered patterns in [Shen et al. 2019] Our fine alignment

More visual results can be found in the project page : 
http://imagine.enpc.fr/~shenx/SegSwap/
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Experiments: aligning a group of Internet images

…

…

…

Inputs Our fine alignment 77



Other results

Input Pred. flow G.T. flow Error map

Optical flow on 
KITTI [Morit and Geiger, 2015] 

and 
Hpatches [Vassileios et al. 2017]

Sparse correspondences on 
RobotCar [Will et al. 2017, Mans et al. 2019]

and 
MegaDepth [Vassileios et al. 2017]

Inputs Avg. coarse align. Avg. fine align. Top: coarse flow
Bottom: fine flow

And two-view geometric estimation, 
3D reconstruction and texture 

transfer… 78



Other results
Two-view geometric estimation on 

YFCC100M [Thomee et al. 2016; Zhang et al. 2019] 
and 

Aachen day-night [Sattle et al. 2018]

Input pairs 

3D 
reconstruction

Source Target Texture transfer

Texture transfer on LTLL [Fernando et al. 
2015]
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Summary

• Unsupervised two-stage method for dense image alignment

• Superior performances on artworks alignment, optical flow, sparse 
correspondences and 3D reconstruction
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Conclusion

Three unsupervised deep learning methods for near-duplicated 
patterns discovery and alignment in artworks: 

• Style-invariant feature from self-supervision 

• Learning co-segmentation from synthetic data

• Dense image alignment from reconstruction
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Publications
Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning. 
Xi Shen, Alexei A. Efros, Mathieu Aubry, 
CVPR 2019; Project page and code: http://imagine.enpc.fr/~shenx/ArtMiner/

Spatially-consistent Feature  Matching and Learning for Art Collections and Watermark Recognition.
Xi Shen, Robin Champenois, Shiry Ginosar, Ilaria Pastrolin, Morgane Rousselot, Oumayma Bounou, Tom Monnier, 
Spyros Gidaris, François Bougard, Pierre-Guillaume Raverdy, Marie-Françoise Limon, Christine Bénèvent, Marc 
Smith, Olivier Poncet, K. Bender, Joyeux-Prunel Béatrice, Elizabeth Honig,  Alexei A. Efros,  Mathieu Aubry
IJCV Minor Revision, 2021; Project page and code: http://imagine.enpc.fr/~shenx/HisImgAna/

Learning Co-segmentation by Segment Swapping for Retrieval and Discovery.
Xi Shen, Alexei A. Efros, Armand Joulin, Mathieu Aubry, 
In submission; Project page and code: http://imagine.enpc.fr/~shenx/SegSwap/

RANSAC-Flow: Generic Two-stage Image Alignment.
Xi Shen, François Darmon, Alexei A. Efros, Mathieu Aubry, 
ECCV 2020; Project page and code: http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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Additional publications on historical data analysis

Large-Scale Historical Watermark Recognition: dataset and a new consistency-based approach.
Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith, Olivier Poncet, Mathieu Aubry
ICPR, 2021, Project page and code: http://imagine.enpc.fr/~shenx/Watermark/

A Web Application for Watermark Recognition.
Oumayma Bounou, Tom Monnier, Ilaria Pastrolin, Xi Shen, Christine Bénèvent, Marie-Françoise Limon-Bonnet, 
François Bougard, Mathieu Aubry, Marc Smith, Olivier Poncet, Pierre-Guillaume Raverdy
Journal of Data Mining and Digital Humanities, 2021 , Web application: https://filigranes.inria.fr/#/filigrane-
search

Image Collation: Matching illustrations in manuscripts.
Ryad Kaoua, Xi Shen, Alexandra Durr, Stavros Lazaris, David Picard, Mathieu Aubry
ICDAR, 2021, Project page and code: http://imagine.enpc.fr/~shenx/ImageCollation/
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Other publications 
Few –shot learning

Empirical Bayes Transductive Meta-Learning with Synthetic Gradients.
Shell Xu Hu, Pablo G Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D Lawrence, Andreas Damianou
ICLR, 2020 
Code: https://github.com/hushell/sib_meta_learn

Re-ranking for image retrieval and transductive few-shot classification.
Xi Shen, Yang Xiao, Shell Hu, Othman Sbai, Mathieu Aubry
NeurIPS, 2021 
Project page and code: http://imagine.enpc.fr/~shenx/SSR/

Weakly supervised learning

Marginalized Average Attentional Network for Weakly-Supervised Learning.
Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W Tsang, Dit-Yan Yeung
ICLR, 2019 
Code: https://github.com/yyuanad/MAAN 84

https://github.com/hushell/sib_meta_learn
http://imagine.enpc.fr/~shenx/SSR/


Future works

• An advanced annotation system incorporating unsupervised / 
weakly supervised techniques, interaction with users

• End-to-end multi-object multi-image discovery
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Thanks to everybody I interacted with

…
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Thanks for your attention! 
Questions ? 
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